

To Study the Comparison of Vascular Access of Brachiobasilic Arteriovenous Fistula to Brachiocephalic Arteriovenous Fistula for Hemodialysis in Patients of End Stage Renal Diseases

Shahid Nazeer*¹, Dibtisam Nazir Khan¹, Pankaj Kaul², Dunaid Gulzar Wani¹, and Bariq Athar Masoodi¹

¹Department of Dialysis Therapy Technology, University School of Allied Health Sciences, RayatBahra University, Mohali, Punjab, India ²University School of Allied Health Sciences, RayatBahra University, Mohali, Punjab, India

ABSTRACT

Hemodialysis remains a life-saving therapy for patients with end-stage renal disease (ESRD), and the development of reliable vascular access has been central to its success. The history of vascular access is marked by several milestones, beginning with the first arterial anastomosis experiments by Jaboulay and Briau in 1896 and subsequent contributions by Alexis Carrel in vascular surgery. These foundational works paved the way for Georg Haas's first human hemodialysis in 1924, Kolff's rotating drum kidney in 1943, Scribner's external AV shunt in 1960, and ultimately Brescia and Cimino's native AV fistula in 1965, which remains the current gold standard.

Objectives: This review aims to trace the historical evolution of vascular access for hemodialysis, highlight key clinical advancements, and summarize current strategies that improve outcomes and patient quality of life.

Methods: A literature-based review was conducted, synthesizing historical records, landmark studies, and recent clinical evidence related to the development, refinement, and optimization of vascular access for hemodialysis. Key topics included surgical innovations, imaging technologies, predictive factors for fistula success, and complication management.

Results: Findings indicate that innovations in surgical methods, such as end-toside anastomosis and basilic vein transposition, along with technological advances like Doppler ultrasound and duplex sonography, have significantly **Citation:** Shahid Nazeer, Ibtisam Nazir Khan, Pankaj Kaul, Junaid Gulzar Wani, and Bariq Athar Masoodi (2025). To Study the Comparison of Vascular Access of Brachiobasilic Arteriovenous Fistula to Brachiocephalic Arteriovenous Fistula for Hemodialysis in Patients of End Stage Renal Diseases.

Journal of American Medical Science and Research. DOI: https://doi.org/10.51470/AMSR.2025.04.02.78

Received 01 August 2025 Revised 04 September 2025 Accepted 01 October 2025

Corresponding Author: Shahid Nazeer Email Address: th3.shahid@gmail.com

Copyright: © The Author(s) 2025. This article is Open Access under a Creative Commons Attribution 4.0 International License, allowing use, sharing, adaptation, and distribution with appropriate credit. License details: http://creativecommons.org/licenses/by/4.0/.

Data is under the CCO Public Domain Dedication (http://creativecommons.org/publicdomain/zero/1.0/) unless otherwise stated.

improved patency rates and reduced complications. Predictive parameters including vessel diameter, blood flow, and arterial elasticity have enhanced preoperative planning and individualized patient care. The "Rule of 6s," maturation criteria, and buttonhole cannulation techniques have provided practical tools for clinicians. Despite ongoing complications such as stenosis, thrombosis, and aneurysm formation, native AV fistulas consistently demonstrate superior longevity and lower morbidity compared to grafts and catheters.

Conclusion: The evolution of vascular access for hemodialysis reflects a continuum of surgical innovation, technological advancement, and multidisciplinary care. While challenges remain, modern approaches emphasizing early evaluation, imaging-guided planning, and personalized techniques have greatly improved vascular access outcomes. Native AV fistulas, supported by these innovations, continue to be the preferred option, offering better survival, reduced complications, and improved quality of life for patients with ESRD.

Keywords: Chronic Kidney Disease, renal disease, Doppler ultrasound, anastomosis.

1: Introduction

Chronic Kidney Disease (CKD) is a progressive disorder that causes irreversible damage to both kidneys. Its global prevalence is high, averaging 11% in the United States and Europe, excluding patients on dialysis or with functioning transplants. Diabetes mellitus is a leading cause of CKD.

The main goal of hemodialysis is to restore fluid and electrolyte balance similar to healthy kidney function [1]. Vascular access is crucial for the effectiveness and outcomes of hemodialysis. Among the various options, the native arteriovenous fistula (AVF) is preferred for its long-term patency, low rates of morbidity, mortality, and infection, along with a reduced need for additional interventions. Despite strong clinical recommendations like those from the National Kidney Foundation's Kidney Disease Outcomes Quality Initiative (NKF-KDOQI), which suggests a native AVF prevalence of at least 65%, many patients—particularly in developing regions—start dialysis with central venous catheters, with only a small percentage beginning with an AVF.

Currently, there are three main types of chronic vascular access: native AVFs, arteriovenous grafts (AVG), and tunneled doublelumen central venous catheters (CVCs). AVFs, usually created as radiocephalic, brachiocephalic, or brachiobasilic fistulas, have the best success rates and durability [2]. The side-to-side and end-to-side anastomotic techniques are widely used, with the side-to-side approach seen as technically easier and showing positive patency results. AVGs are used when native vessels are not suitable, providing reliable access but with a slightly higher risk of complications like thrombosis and infection [3]. CVCs offer immediate access but carry the highest risk and are used mainly for urgent or short-term needs. Considering the various anatomical options and complications associated, this study aims to assess the best sites for AVF creation, success rates in different anatomical locations, and the range of complications experienced with arteriovenous fistulas in chronic hemodialysis [4].

Study Design

Randomized Controlled Trial

Sample Size

Using following values, the sample size was calculated using OPEN EPI software, the total sample size required is 150 patients. Considering 1:1 randomization, each group will have following sample size.

Group A: Patients of ESRD with Brachiobasalic Arteriovenous Fistula; **n=75**

Group B: Patients of ESRD with Brachiocephalic Arteriovenous Fistula; **n = 75**

Formula:

$$1 - \beta = 1 - \text{Probt}\left(t_{1-\alpha/2, n_{A}(r+1)-2}, n_{A}(r+1) - 2, \sqrt{\frac{rn_{A}d^{2}}{(r+1)\sigma^{2}}}\right)$$

Desired Power=95%

Ratio=1

a (Probability of a Type I error (false positive))=5%

(Common standard deviation)=0.81

d (Difference in means $\mu 2 - \mu 1 = 0.51$

 δ =0.62963

Minimum Sample size required is 134 (n1=67, n2=67) in each group.

Consider dropout rate

Considering 10% drop out rate.

Group 1 = 75

Group 2 = 75

Considering 10% drop out rate.

Total Sample required is 150 (n1 = 75, n2 = 75) Study Population

Inclusion Criteria

1. All the patients with End Stage Renal Disease on Maintenance Hemodialysis (MHD).

2.All the patients with End Stage Renal Disease that required MHD as advised by treating Physicians or Nephrologists.

3.All the patients with End Stage Renal Disease that required Renal Transplant surgery, but was on Hemodialysis (HD).

4.Patients who previously had arteriovenous fistula surgery that failed for any reason, with vascular access created on the opposite upper arm.

Exclusion Criteria

- 1. Patients with previously operated AVF with complications.
- 2. Patients with failed arteriovenous fistula on both upper arms

Result

Table 1:- Comparison of age (years) between brachiobasilic and brachiocephalic

Age (years)	Brachiobasilic (n=75)	Brachiocephalic (n=75)	Total	P value
<=20	1 (1.33%)	1 (1.33%)	2 (1.33%)	
			17	1
21-30	8 (10.67%)	9 (12%)	(11.33%)	
			32	1
31-40	13 (17.33%)	19 (25.33%)	(21.33%)	
			44	0.87‡
41-50	22 (29.33%)	22 (29.33%)	(29.33%)	0.07
			29	
51-60	16 (21.33%)	13 (17.33%)	(19.33%)	
			17	
61-70	9 (12%)	8 (10.67%)	(11.33%)	
>70	6 (8%)	3 (4%)	9 (6%)	
Mean±SD	48.89±14.17	45.96±13.34	47.43±13.79	
Median(25th-	48(40-58)	45(37-52.5)	47(39-55)	0.194*
75th percentile)	40(40 - 36)	43(37-32.3)	47(39-33)	0.194
Range	20-78	13-77	13-78	

^{*}Independent ttest,‡ Fisher's exact test

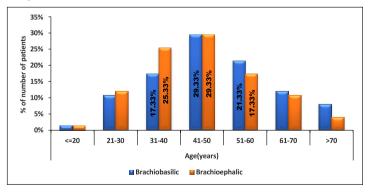


Figure 1:-Comparison of age (years) between brachiobasilic and brachiocephalic.

Distribution of age (years)was comparable between brachiobasilic and brachiocephalic. (<=20years:-1.33% vs 1.33% respectively, 2¹-³0years:-10.67% vs 12%

respectively, 31-40 years:- 17.33% vs 25.33% respectively, 41-50years:-29.33% vs 29.33%

respectively, 51-60 years:-21.33% vs 17.33 % respectively, 61-70 years:-12 % vs 10.67%

respectively, >70 years: -8 % vs 4 % respectively)(p value=0.87).

Mean \pm S D of age (years) in brachiobasilic was 48.89 \pm 14.17 and brachiocephalic was

 45.96 ± 13.34 with no significant difference between them.(p value=0.194

Table 2:-Comparison of gender between brachiobasilic and brachiocephalic

Gender	Brachiobasilic (n=75)	Brachiocephalic (n=75)	Total	P value
Female	24 (32%)	28 (37.33%)	52 (34.67%)	
Male	51 (68%)	47 (62.67%)	98 (65.33%)	0.493§
Total	75 (100%)	75 (100%)	150 (100%)	

§Chisquare test

Distribution of gender was comparable between brachiobasilic and brachiocephalic. (Female:-32% vs 37.33 % respectively, Male:-68 % vs 62.67% respectively) (p value=0.493). It is shown in table 2

Table 6:- Comparison of co-morbidities between brachiobasilic and brachiocephalic

Co-morbidities	Brachiobasilic (n=75)	Brachiocephalic (n=75)	Total	Pvalue
Diabetes mellitus	39 (52%)	33 (44%)	72 (48%)	0.327§
Hypertension	35 (46.67%)	50 (66.67%)	85 (56.67%)	0.013§
Atherosclerosis	6 (8%)	3 (4%)	9 (6%)	0.494‡
CVA	3 (4%)	5 (6.67%)	8 (5.33%)	0.719‡
Peripheralarterial disease	44 (58.67%)	42 (56%)	86 (57.33%)	0.741§
Peripheral venous disorder	5 (6.67%)	4 (5.33%)	9 (6%)	1 [‡]
Any other disorder	27 (36%)	35 (46.67%)	62 (41.33%)	0.185§

^{*}Fisher's exact test,*Chisquare test

Proportion of patients with hypertension was significantly lower in brachiobasilic as compared to brachiocephalic (Hypertension: 46.67% vs 66.67% respectively). (p value=0.013)

Distribution of co-morbidities was comparable between brachiobasilic and brachiocephalic. (Diabetes mellitus:- 52 % vs 44 % respectively (p value=0.327), Athero sclerosis:-8 % vs 4 % respectively (p value=0.494),CVA:-4 % vs 6.67 % respectively (p value=0.719), Peripheral arterial disease:- 58.67 % vs 56 % respectively (p value=0.741), Peripheral venous disorder:- 6.67 % vs 5.33 % respectively (p value=1), Any other disorder:- 36 % vs 46.67 % respectively (p value=0.185). It is shown in table 6

Table 7:- Comparison of forearm inspection between brachiobasilic and brachiocephalic

Forearm inspection	Brachiobasilic (n=75)	Brachiocephalic (n=75)	Total	P value
Abnormal Condition of skin	4 (5.33%)	7 (9.33%)	11 (7.33%)	0.533‡
Visible veins	37 (49.33%)	35 (46.67%)	72 (48%)	0.744§
Previous Scar marks	5 (6.67%)	4 (5.33%)	9 (6%)	1 [‡]

[‡]Fisher's exact test,[§]Chisquare test

Distribution of forearm inspection was comparable between brachiobasilic and brachiocephalic. (Abnormal condition of skin:-5.33 % vs 9.33 % respectively (p value=0.533), Visible veins:-49.33 % vs 46.67 % respectively (p value=0.744), Previous scar marks:-6.67 % vs 5.33 % respectively (p value=1). It is shown in table 7.

 ${\it Table\,8:-} Comparison\, of upper\, arm\, in spection\, between\, brachiobasilic\, and\, brachiocephalic$

Upper arm inspection	Brachiobasilic (n=75)	Brachiocephalic (n=75)	Total	P value
Abnormal Condition of skin	4 (5.33%)	7 (9.33%)	11 (7.33%)	0.533‡
Visible veins	35 (46.67%)	50 (66.67%)	85 (56.67%)	0.013§
Previous Scar marks	5 (6.67%)	4 (5.33%)	9 (6%)	1 [‡]

[‡]Fisher's exacttest,[§]Chisquare test

Proportion of patients with visible veins in upper arm was significantly lower in brachiobasilic as compared to brachiocephalic (Visible veins:-46.67 % vs 66.67 % respectively). (p value=0.013)

Distribution of other upper arm inspection was comparable between brachiobasilic and brachiocephalic . Abnormal condition of skin:-5.33% vs 9.33% respectively (pvalue=0.533), Previous scar marks:-6.67% vs 5.33% respectively (p value=1)). It is shown in table 8.

 ${\it Table 9:- Comparison of for earm (radial) between brachiobasilic and brachiocephalic and brachiocepha$

Forearm (radial)	Brachiobasilic (n=75)	Brachiocephalic (n=75)	Total	P value
		Arterial volume		
Low volume	40 (53.33%)	25 (33.33%)	65 (43.33%)	0.013§
High volume	35 (46.67%)	50 (66.67%)	85 (56.67%)	0.0133
	Со	ondition of vessel wall		
Normal	69 (92%)	72 (96%)	141 (94%)	0.494‡
Atherosclerotic	6 (8%)	3 (4%)	9 (6%)	0.494+
_		Palpation of vein		•
Non palpable	38 (50.67%)	40 (53.33%)	78 (52%)	0.744§
Palpable	37 (49.33%)	35 (46.67%)	72 (48%)	0./448

[‡]Fisher's exact test, [§]Chisquare test

Proportion of patients with low arterial volume was significantly higher in brachiobasilic as compared to brachiocephalic (Low volume:-53.33 % vs 33.33 % respectively). Proportion of patients with high arterial volume was significantly lower in brachiobasilic as compared to brachiocephalic (High volume:-46.67 % vs 66.67% respectively). (p value=0.013) Distribution of condition of vessel wall was comparable between brachiobasilic and brachiocephalic. (Normal:-92 % vs 96 % respectively, Atherosclerotic:-8 % vs 4 % respectively) (p value=0.494). Distribution of palpation of vein was comparable between brachiobasilic and brachiocephalic. (Non palpable:-50.67 % vs 53.33 % respectively, Palpable:-49.33 % vs 46.67 % respectively) (p value=0.744). It is shown in table 9.

Table 16:- Comparison of pre-operative colour Doppler of upper limb{Brachial artery} between brachiobasilic and brachiocephalic

Pre-operative colour Doppler of upper limb{Brachial artery}	Brachiobasilic (n=75)	Brachiocephalic (n=75)	Total	P value
Pre-oper-	ative color Doppler of upper limb{Brachia	l artery}		
Atherosclerotic changes	17 (22.67%)	27 (36%)	44 (29.33%)	0.073§
Wall calcification	6 (8%)	3 (4%)	9 (6%)	0.494‡
Tortuosity	4 (5.33%)	7 (9.33%)	11 (7.33%)	0.533‡
	Caliber(mm)			
Mean±SD	4.08 ±0.18	4.08 ±0.15	4.08 ±0.16	
Median(25th-75th percentile)	4.1(3.9-4.2)	4.1(3.9-4.2)	4.1(3.9-4.2)	0.0624
Range	3.7-4.5	3.8-4.3	3.7-4.5	0.962†
	Vmax(cm/sec)			
Mean±SD	84.19±1.67	83.65±1.57	83.92±1.64	
Median(25th-75th percentile)	84(83-85)	84(82-85)	84(83-85)	0.056+
Range	80-90	80-87	80-90	0.056†
	Qmax(mL/min)			
Mean±SD	131.38±48.02	111.67±48.71	121.52±49.2	
Median(25th-75th	131.88(101.14-	103.86(72.17-	124.54(79.18-	
percentile)	169.63)	140.52)	149.21)	0.021†
Range	28.85-286.12	23.08-286.12	23.08-286.12	0.021
	Depth from skin(mm)			
Mean±SD	4.36 ±0.49	4.36 ±0.41	4.36 ±0.45	
Median(25th-75th percentile)	4.4(4.2-4.6)	4.4(4.2-4.6)	4.4(4.2-4.6)	0.854†
Range	3.2-5.4	3.2-5.4	3.2-5.4	0.054

[†]Mann Whitney test, *Chisquare test, *Fisher's exact test

Distribution of pre-operative colour doppler of upper limb {Brachial artery} was comparable between brachiobasilic and brachiocephalic.(Atherosclerotic changes:-22.67%vs 36 % respectively (p value=0.073), Wall calcification:-8 % vs 4% respectively (p value=0.494), Tortuosity:-5.33 % vs 9.33 % respectively (p value=0.533)).

No significant difference was seen in caliber (mm) (p value=0.962), V max (cm/sec) (p value=0.056), depth from skin (mm) (p value=0.854) between brachiobasilic and brachiocephalic. Median (25th-75th percentile) of caliber (mm), V max (cm/sec), depth from skin (mm) in brachiobasilic was 4.1(3.9-4.2), 84(83-85), 4.4(4.2-4.6) respectively and in brachiocephalic was 4.1(3.9-4.2), 84(82-85), 4.4(4.2-4.6) respectively with no significant difference between them. Significant difference was seen in Q max (mL/min) between brachiobasilic and brachiocephalic. (p value < .05) Median (25th-75th percentile) of Q max (mL/min) in brachiobasilic was 131.88(101.14-169.63) which was significantly higher as compared to brachiocephalic (103.86(72.17-140.52)) (p value=0.021)). It is shown in table 16, figure 16.1 and 16.2.

Table 19:-Comparison of operative details between brachiobasilic and brachiocephalic

Operative details	Brachiobasilic (n=75)	Brachiocephalic (n=75)	Total	Pvalue		
		Side				
Left	28 (37.33%)	33 (44%)	61 (40.67%)	0.406§		
Right	47 (62.67%)	42 (56%)	89 (59.33%)	0.4063		
	Type of anastomosis					
Side to side	75 (100%)	75 (100%)	150 (100%)	ı		
		Suture material				
Prolene	75 (100%)	75 (100%)	150 (100%)	ı		
	Loops used					
No	71 (94.67%)	68 (90.67%)	139 (92.67%)	0.533 [‡]		
Yes	4 (5.33%)	7 (9.33%)	11 (7.33%)	0.555+		

[‡]Fisher's exact test, [§]Chisquare test

Distribution of side was comparable between brachiobasilic and brachiocephalic. (Left:- 37.33 % vs 44 % respectively, right:- 62.67 % vs 56 % respectively) (p value=0.406).

Distribution of loops used was comparable between brachiobasilic and brachiocephalic. (No:- 94.67% vs 90.67% respectively, Yes:- 5.33% vs 9.33% respectively) (p value=0.533). All the patients had side to side anastomosis and prolene suture material was used in all patients. It is shown in table 19

Table 20:- Comparison of intra operative findings between brachiobasilic and brachiocephalic

Intra operative findings	Brachiobasilic (n=75)	Brachiocephalic (n=75)	Total	Pvalue
Mismatched				
Diameters of artery and Vein	0 (0%)	0 (0%)	0 (0%)	-
Vascular injury of the mobilized				
segment	0 (0%)	0 (0%)	0 (0%)	•
Presence of valve in	0 (0%)	0 (0%)	0 (0%)	
The distal segment	0 (0%)	0 (0%)	0 (0%)	-
More than one	0 (0%)	0 (0%)	0 (0%)	
Tributary of the vein	0 (070)	0 (070)	0 (070)	-
Peripheral location				
Of the previous fistula	4 (5.33%)	7 (9.33%)	11 (7.33%)	0.533‡
Atherosclerotic	17 (22.67%)	27 (36%)	44	0.073§
artery	17 (22.07 70)	27 (30%)	(29.33%)	0.073
Oedema over the	6 (8%)	3 (4%)	9 (6%)	0.494‡
extremity	0 (8%)	3 (470)	7 (070)	0.774

D		l f (1)		
Dura	tion of prick over the extremity	before surgery (days)		
Mean±SD	51.09±6.74	51 ±6.37	51.05± 6.53	
Median(25th-75th percentile)	50(45-56)	51(45-55)	51(45-55)	0.819 [†]
Range	40-74	40-62	40-74	0.019
	Length of anastomosis	s (mm)		
Mean±SD	9.06 ±0.66	8.93 ±0.6	8.99 ±0.63	
Median(25th-75th percentile)	9(8.5-9.6)	8.9(8.5-9.5)	8.95(8.5- 9.6)	0.203 [†]
Range	7.8-10.2	7.9-10	7.8-10.2	0.203
Diameter of artery(mm)				
Mean±SD	4.29 ±0.42	4.23 ±0.41	4.26 ±0.42	0.386 [†]
Median(25th-75th	4.3(4.1-4.6)	4.3(3.9-4.6)	4.3(4-4.6)	0.386

percentile)				
Range	2.8-4.9	3.2-4.9	2.8-4.9	
		Diameter of vein(mm)		
Mean±SD	2.85 ±0.52	2.92 ±0.52	2.88 ±0.52	
Median(25th-75th percentile)	2.8(2.4-3.2)	2.9(2.6-3.4)	2.8(2.45-3.3)	0.382 [†]
Range	2.1-3.8	2.1-3.8	2.1-3.8	

[†]Mann Whitney test, [‡]Fisher's exact test, [§]Chisquaretest

Distribution of intra operative findings was comparable between brachiobasilic and brachiocephalic. (Peripheral location of the previous fistula:- 5.33% vs 9.33% respectively (p value=0.533), Atherosclerotic artery:- 22.67% vs 36% respectively (p value=0.073), Oedema over the extremity:- 8% vs 4% respectively (p value=0.494)).

None of the patient had mismatched diameters of artery and vein, vascular injury of the mobilized segment, presence of valve in the distal segment, more than one tributary of the vein.

No significant difference was seen in duration of prick over the extremity before surgery (days) (p value=0.819), length of anastomosis (mm)(p value=0.203), diameter of artery (mm) (pvalue=0.386), diameter of vein (mm) (p value=0.382) between brachiobasilic and brachiocephalic. Median (25th-75th percentile) of duration of prick over the extremity before surgery (days), length of anastomosis (mm), diameter of artery (mm), diameter of vein (mm) in brachiobasilic was 50 (45-56), 9 (8.5-9.6), 4.3 (4.1-4.6), 2.8(2.4-3.2) respectively and in brachiocephalic was 51(45-55), 8.9(8.5-9.5), 4.3(3.9-4.6), 2.9(2.6-3.4) respectively with no significant difference between them.

It is shown in table 20.

 $Table\,21:- Comparison\,of\,postoperative\,radiological\,assessment\,between\,brachiobasilic\,and\,brachiocephalic$

Post operative radiological assessment	Brachiobasilic(n=7 5)	Brachiocephalic(n=7 5)	Total	P value
	Postoperative radiolog	gical assessment		
Aneurysm	0 (0%)	0 (0%)	0 (0%)	-
Subcutaneous s collections	5 (6.67%)	2 (2.67%)	7 (4.67%)	0.442
	Post-operati	ve day		
Mean±SD	3 ±0	3 ±0	3 ±0	
Median(25th -75th percentile)	3(3-3)	3(3-3)	3(3-3)	
Range	3-3	3-3	3-3	1 [†]
	Caliber(m	ım)	•	
Mean±SD	2.68 ±0.48	2.7 ±0.44	2.69 ±0.46	
Median(25th -75th percentile)	2.6(2.3-3.05)	2.6(2.4-3.05)	2.6(2.3-3.075)	0.696
Range	2-3.6	2-3.9	2-3.9	†
	Vmax(cm/	sec)		
Mean±SD	137.65±17.93	133.53±15.06	135.59±16.63	
Median(25th -75th percentile)	134(120-152)	132(120-144.5)	133.5(120- 149.75)	0.222
Range	112-181	106-175	106-181	1
	Qmax(mL/)	min)		
Mean±SD	629.58±114.88	646.86±121.62	638.22± 118.22	
Median(25th -75th percentile)	643.23(564.7- 677.385)	653.33(564.55- 763.865)	643.23(564.495 -732.007)	0.366
Range	399.56-887.76	349.34-887.76	349.34-887.76	†

†Mann Whitney test, ‡Fisher's exact test

Distribution of post operative radiological assessment was comparable between brachiobasilic and brachiocephalic. (Subcutaneous collections: -6.67% vs 2.67% respectively) (p value=0.442).

None of the patient had aneurysm.

No significant difference was seen in post-operative day (p value=1), caliber (mm)(p value=0.696), V max (cm/sec)(p value=0.222), Q max (mL/min)(p value=0.366) between brachiobasilic and brachiocephalic. Median(25th-75th percentile) of post-operative day, caliber (mm), V max (cm/sec), Q max (mL/min) in brachiobasilic was 3(3-3), 2.6(2.3-3.05), 134(120-152), 643.23(564.7-677.385) respectively and in brachiocephalic was 3(3-3), 2.6(2.4-3.05), 132(120-144.5), 653.33(564.55-763.865) respectively with no significant difference between them.

 $Table\,22:-Comparison\,of\,postoperative\,clinical\,assessment\,between\,brachio basilic\,and\,brachio cephalic$

Postoperative clinical assessment	Brachiobasilic (n=75)	Brachiocephalic (n=75)	Total	Pvalue
	Posto	perative clinical assessment		
VisibleVeinsat Elbowand wrist	75 (100%)	72 (96%)	147 (98%)	0.245‡
Palpationof distalarteries	73 (97.33%)	73 (97.33%)	146 (97.33%)	1 [‡]
		Post-operativeday		•
Mean±SD	40.25±4.93	39.4 ±4.93	39.83±4.93	
Median(25th-75th percentile)	40(37-43.5)	39(35.5-43)	40(37-43)	0.319 [†]
Range	32-56	30-56	30-56	0.319

[†]Mann Whitney test, ‡Fisher's exact test

Figure 22.2:-Comparison of post-operative day between brachiobasilic and brachiocephalic.(non-parametric variable, Box-whisker plot)

Distribution of post operative clinical assessment was comparable between brachiobasilic and brachiocephalic. (Visible Veins at elbow and wrist: - 100% vs 96% respectively (p value=0.245), Palpation of distal arteries:- 97.33% vs 97.33% respectively (p value=1)).

No significant difference was seen in post-operative day (p value=0.319) between brachiobasilic and brachiocephalic. Median (25th-75th percentile) post-operative day in brachiobasilic was 40(37-43.5) and in brachiocephalic was 39(35.5-43) with no significant difference between them. It is shown in table 22

 $Table\,23:-\,Comparison\,of\,follow\,up\,radiological\,assessment\,between\,brachiobasilic\,and\,brachiocephalic$

Follow up radiological assessment	Brachiobasilic (n=75)	Brachiocephalic (n=75)	Total	P valu
Aneurysm	0 (0%)	0 (0%)	0 (0%)	-
Subcutaneous collections	5 (6.67%)	2 (2.67%)	7 (4.67%)	0.44 2 [‡]
	Post-ope	erative day		•
Mean±SD	44.81±3.33	44.8 ±2.68	44.81±3.01	
Median(25th-75th percentile)	45(43-47)	45(43-47)	45(43-47)	0.51 5 [†]
Range	35-50	38-50	35-50	
	Calib	er(mm)		
Mean±SD	4.53 ±0.41	4.57 ±0.37	4.55 ±0.39	
Median(25th-75th percentile)	4.4(4.2-4.85)	4.6(4.2-4.9)	4.6(4.2-4.9)	0.41 7 [†]
Range	3.8-5.5	3.9-5.3	3.8-5.5	
	Vmax	(cm/sec)		•
Mean±SD	252.71±40.49	248.75±39.76	250.73±40.04	
Median(25th-75th percentile)	241(229.5-276)	234(219-284)	238(219-276)	0.38 7 [†]
Range	180-342	180-330	180-342	
	Qmax(mL/min)		
Mean±SD	641.74± 117.39	646.17±128.53	643.95± 122.69	
Median(25th-75th	624.26(565.2-	623.98(565.32-	624.12(565.2-	0.81 0 [†]
percentile)	728.87)	735.07)	732.31)	
Range	414.34-955.19	395.64-955.19	395.64-955.19	

[†]Mann Whitney test, ‡Fisher's exact test

None of the patients had an urysm.

Distribution of Subcutaneous collections was comparable between brachiobasilic and brachiocephalic. (Subcutaneous collections: 6.67% vs 2.67% respectively) (p value=0.442). No significant difference was seen in post-operative day(pvalue=0.515), caliber(mm)(p value=0.417), Vmax (cm/sec) (p value=0.387), Qmax (mL/min) (p value=0.810) between brachio basilica and brachiocephalic. Median ($25th-75^{th}$ percentile) of post-operativeday, caliber (mm), Vmax (cm/sec), Qmax (mL/min) in brachiobasilic was 45 (43-47), 4.4 (4.2-4.85), 241 (229.5-276), 624.26 (565.2-728.87) respectively and in brachiocephalic was 45 (43-47), 4.6 (4.2-4.9), 234 (219-284), 623.98 (565.32-735.07) respectively with no significant difference between them. It is shown in table 23.

 $Table\,24:- Comparison\, of patency\, of fistula\, on\, 30\, day\, follow\, up\, between\, brachiobasilic\, and\, brachiocephalic\, and\, brachi$

Patency of fistula on 30 day Follow up	Brachiobasilic (n=75)	Brachiocephalic (n=75)	Total	P value
Patent	66 (88%)	66 (88%)	132 (88%)	
Not patent	9 (12%)	9 (12%)	18 (12%)	.8
			150	15
Total	75 (100%)	75 (100%)	(100%)	

[§]Chisquare test

Distribution of patency of fistula on 30 day follow up was comparable between brachiobasilic and brachiocephalic. (Patent: 88% vs 88% respectively, Not patent: 12% vs 12% respectively) (p value=1). It is shown in table 24.

Table 25:- Comparison of previous existing radial fistula between brachiobasilic and brachiocephalic

Previous existing radial fistula	Brachiobasilic (n=75)	Brachiocephalic (n=75)	Total	P value
No	70 (93.33%)	71 (94.67%)	141 (94%)	
Yes	5 (6.67%)	4 (5.33%)	9 (6%)	1 [‡]
Total	75 (100%)	75 (100%)	150 (100%)	

^{*}Fisher's exact test

Distribution of previous existing radial fistula was comparable between brachiobasilic and brachiocephalic. (No:- 93.33 % vs 94.67 % respectively, Yes:- 6.67 % vs 5.33 % respectively) (p value=1). It is shown in table 25.

Table 27:- Comparison of patency and clinical and radiological assessment at Follow up 1 (day 30) and follow up 2 (day 90) between brachiobasilic and brachiocephalic

Patency of fistula on 30 day follow up	Brachiobasilic (n=75)	Brachiocephalic (n=75)	Total	P value
	Patency of fistula	on 30 day follow up		u .
Patent	66 (88%)	66 (88%)	132 (88%)	1§
Not patent	9 (12%)	9 (12%)	18 (12%)	13
	Postoperative clinica	l assessment follow up 1		
		()		0.24
Visible Veins at elbow And wrist	75 (100%)	72 (96%)	147 (98%)	5 [‡]
Palpation of distal	= 0.50 = 00000	= 0 (0 = 000)	11110707000	
arteries	73 (97.33%)	73 (97.33%)	146 (97.33%)	1 [‡]
	Postoperative radiologic	al assessment on follow up1		· I
	Vmax	(cm/sec)		
Mean±SD	137.65 ± 17.93	133.53 ± 15.06	135.59 ± 16.63	0.22
Median(25th-75 th percentile)	134(120-152)	132(120-144.5)	133.5(120-149.75)	1 .
Range	112-181	106-175	106-181	2 [†]
	Qmax	(mL/min)		
Mean±SD	629.58 ± 114.88	646.86 ± 121.62	638.22 ± 118.22	0.36
Median(25th-75 th percentile)	643.23(564.7-677.385)	653.33(564.55-763.865)	643.23(564.495-732.007)	1 .
Range	399.56-887.76	349.34-887.76	349.34-887.76	6 [†]
	Postoperative clinical ass	essment follow up 2(90 days)		
Patent	65 (87%)	62 (83%)	127 (85%)	0.65
Non patent	10 (13%)	13 (17%)	23 (15%)	§
				0.24
VisibleVeinsatelbow andwrist	75 (100%)	72 (96%)	147 (98%)	5 [‡]
Palpationofdistal arteries	73 (97.33%)	73 (97.33%)	146 (97.33%)	1 [‡]
	Postoperative radiologic	al assessment on follow up2		1
	Vmax	(cm/sec)		
Mean±SD	252.71 ±40.49	248.75 ±39.76	250.73 ± 40.04	
Median(25th-75th	241(229.5-276)	234(219-284)	238(219-276)	0.38
percentile)	· · ·	` ·	<u> </u>	7 [†]
Range	180-342	180-330	180-342	

Qmax(mL/min)						
Mean±SD	641.74 ±117.39	646.17 ±128.53	643.95 ± 122.69	0.81		
Median(25th-75 th percentile)	624.26(565.2-728.87)	623.98(565.32-735.07)	624.12(565.2732.31)	0 [†]		
Range	414.34-955.19	395.64-955.19	395.64-955.19			
	Complications	on follow up 2				
Aneurysm	0 (0%)	0 (0%)	0 (0%)	-		
Subcutaneous collections	5 (6.67%)	2 (2.67%)	7 (4.67%)	0.44 2 [‡]		

Distribution of patency of fistula on 30 day follow up was comparable between brachiobasilic and brachiocephalic. (Patent:- 88% vs 88% respectively, Not patent:- 12% vs 12% respectively) (p value=1).

Follow up 1

Distribution of post operative clinical assessment was comparable between brachiobasilic and brachiocephalic. (Visible Veins at elbow and wrist:- 100% vs 96% respectively (p value=0.245), Palpation of distal arteries:- 97.33% vs 97.33% respectively (p value=1).

No significant difference was seen in post-operative day day 3 V max (cm/sec) (p value=0.222),Qmax (mL/min) (p value=0.366) between brachiobasilic and brachiocephalic. Median (25th-75th percentile) of Vmax(cm/sec), Qmax(mL/min) in brachiobasilic was 134 (120-152),643.23 (564.7-677.385) respectively and in brachiocephalic was 132 (120-144.5), 653.33 (564.55-763.865) respectively with no significant difference between them.

Follow up 2

Distribution of patency of fistula on 90 day follow up was comparable between brachiobasilic and brachiocephalic. (Patent:- 87% vs 83% respectively, Not patent:- 13 % vs 17 % respectively) (p value=0.65).

Distribution of post operative clinical assessment was comparable between brachiobasilic and brachiocephalic. (Visible Veins at elbow and wrist:- 100% vs 96% respectively (p value=0.245), Palpation of distal arteries:- 97.33% vs 97.33% respectively (p value=1)).

No significant difference was seen in V max (cm/sec)(p value=0.387), Q max (mL/min) (p value=0.810) between brachiobasilic and brachiocephalic. Median (25th-75th percentile) of V max (cm/sec), Qmax (mL/min) in brachiobasilic was 241(229.5-276), 624.26 (565.2-728.87) respectively and in brachiocephalic was 234 (219-284), 623.98 (565.32-735.07) respectively with no significant difference between them.

None of the patients had an urysm.

Distribution of Subcutaneous collections was comparable between brachiobasilic and brachiocephalic. (Subcutaneous collections:-6.67% vs 2.67% respectively) (p value=0.442).

 $Table\ 28:- Comparison\ of\ patency\ and\ clinical\ and\ radiological\ assessment\ at\ follow\ up\ 3\ (6\ months)\ between\ brachiobasilic\ and\ brachiocephalic$

	Postoperative cl	inical assessment follow up 3(6 months)		
Patency of fistula at 6months	Brachiobasilic (n=75)	Brachiocephalic (n=75)	Total	P value
Patent	64(85%)	53(71%)	117(78%)	<0.05§
Not patent	11(15%)	22(29%)	33(22%)	<0.05
Visible Veins at Elbow and wrist	70 (100%)	60 (96%)	130 (98%)	0.245‡
Palpation of distal arteries	73 (97.33%)	73 (97.33%)	146 (97.33%)	1 [‡]
	Postoperative radio	logical assessment on follow up 3(6 months)	•	•
		Vmax(cm/sec)		
Mean±SD	274.71 ± 40.49	248.75 ± 39.76	250.73 ± 40.04	
Median(25th-75 th percentile)	154(229.5-276)	234(219-284)	238(219-276)	0.387†
Range	180-342	180-330	180-342	0.367
		Qmax(mL/min)	•	•
Mean±SD	654.74 ± 117.39	646.17 ± 128.53	643.95 ± 122.69	
Median(25th-75 th percentile)	632.26(565.2-728.87)	623.98(565.32-735.07)	624.12(565.2-732.31)	0.810†
Range	414.34-955.19	395.64-955.19	395.64-955.19	0.810
·	Со	mplications on follow up 3		
Aneurysm	0 (0%)	0 (0%)	0 (0%)	-
Subcutaneous collections	0 (0 %)	2 (2.67%)	7 (4.67%)	0.442‡

Distribution of patency of fistula on 6 months follow up was statistically better for brachiobasilic as compared to brachiocephalic. (Patent:-85 % vs 71 % respectively, Not patent:-15 % vs 29 % respectively) (p value=<0.05).

Distribution of post operative clinical assessment was comparable between brachiobasilic and brachiocephalic. (Visible Veins at elbow and wrist:- 100% vs 96% respectively (p value=0.245), Palpation of distal arteries:- 97.33% vs 97.33% respectively (p value=1)).

No significant difference was seen in post-operatively after 6 months V max (cm/sec) (p value=0.387), Qmax (mL/min) (p value=0.810) between brachiobasilic and brachiocephalic. Median (25th-75th percentile) ofVmax (cm/sec), Qmax(mL/min) in brachiobasilic was 154 (229.5-276), 632.26 (565.2-728.87) respectively and in brachiocephalic was 234 (219-284), 623.98 (565.32-735.07) respectively with no

Significant difference ertween them. None of the patients had aneurysm.

Distribution of Subcutaneous collections was comparable between brachiobasilic and brachiocephalic. (Subcutaneous collections:-0% vs 2.67% respectively) (p value=0.442).

Table 29:- Comparison of patency at all Follow ups between brachiobasilic and brachiocephalic

Patency of fistula on 30 days follow up	Brachiobasilic (n=75)	Brachiocephalic (n=75)	Total	P value
Patent	66 (88%)	66 (88%)	132 (88%)	§.
Not patent	9 (12%)	9 (12%)	18 (12%)	15
Patency of fistula on 90 days follow up				
Patent	65 (87%)	62(83%)	127(85%)	0.65
Not patent	10(13%)	13(17%)	23(15%)	0.03
Patency of fistula at 6 months				
Patent	64(85%)	53(71%)	117(78%)	< 0.05
Not patent	11(15%)	22(29%)	33(22%)	\0.05

Distribution of patency of fistula on 30 day follow up was comparable between brachiobasilic and brachiocephalic. (Patent:- 88 % vs 88 % respectively, Not patent:- 12 % vs 12 % respectively) (p value=1)

Distribution of patency of fistula on 90 day follow up was comparable between brachiobasilic and brachiocephalic. (Patent: 87% vs 83% respectively, Not patent: 13% vs 17% respectively) (p value=0.65).

The patency of brachiobasilic fistula was statistically significant as compared to brachiocephalic. (Patent:- 85% vs 71% respectively, Not patent:- 15% vs 29% respectively) (p value=<0.05) at 6 months follow up.

Table 30:- Analysis of Non Patency between brachiobasilic and brachiocephalic

Follow up Period	Brachiobasilic (n=75)		Brachiocephalic (n=75)	
	Time dependent	Anatomic	Time dependent	Anatomic
Day 10	0	0	0	0
Day 30	9	0	9	0
Day 90	9	1	11	2
6 months	9	2	18	4

Analysis of postoperative non patency was comparable between brachiobasilic and brachiocephalic.

No significant difference was seen post-operatively after 10 days, time dependent and anatomic non patency was 0 % and 0 % respectively.

No significant difference was seen post-operatively after 30 days, time dependent non patency was 9% and 9% respectively and anatomic patency was 0% and 0% respectively.

Some Difference was seen while analysing the non patency between brachiobasilic and brachiocephalic post-operatively after 90 days, time dependent non patency was 9% and 11% respectively and anatomic patency was 1% and 2% respectively.

Significant difference was seen while analysing the non patency between brachiobasilic and brachiocephalic post-operatively after 6 months, while the time dependent non patency was 9% and 18% respectively and anatomic patency was 2% and 4% respectively.

Table 31:- Analysis of Vascular access Maturation between brachiobasilic and brachiocephalic

Vascular Access Maturation	Brachiobasilic (n=75)	Brachiocephalic (n=75)	Total
Immediate Vascular Access Failure	0 (0%)	0(0%)	0(0%)
Early Dialysis Suitability Failure	9(12%)	11(15%)	18(12%)
Late Dialysis Suitability Failure	11(15%)	22(29%)	33(22%)
Fistula Used Successfully for Hemodialysis (FUSH)	55(73%)	42(56%)	97(65%)
Total	75	75	150

Analysis of Vascular access Maturation was comparable between brachiobasilic and brachiocephalic.Immediate vascular access failure was seen in 0% of both brachiobasilic and brachiocephalic.No significant difference was seen in early dialysis suitability failure post- operatively it was 12% and 15% respectively.Significant difference was seen in late dialysis suitability failure post- operatively it was 15% and 29% respectively.In Fistula Used Successfully for Hemodialysis (FUSH) significant difference of 73% and 56% respectively for brachiobasilic and brachiocephalic was observed.

Table 32:- Analysis of Time of Cannulation between brachiobasilic and brachiocephalic

	Brachiobasilic (n=75)	Brachiocephalic (n=75)	P value
Mean	47.61	52.64	0.0001
SD	2.56	2.98	0.0001

Distribution of time of cannulation was comparable between brachiobasilic and brachiocephalic. (Mean: - 47.61 vs 52.64 respectively, Not patent:- 52.64 vs 2.98% respectively) (p value=0.0001). The difference was statistically significant.

Discussion

In this prospective study, intradialytic dysglycemia was observed in one-third of hemodialysis sessions and was strongly associated with intradialytic hypotension after adjustment for ultrafiltration and insulin timing. This confirms that glucose fluctuations are not simply incidental but clinically relevant contributors to dialysis instability. Hypoglycemia and large glucose swings likely trigger osmotic shifts and autonomic responses that amplify hemodynamic compromise. Our results align with recent multicenter reports using continuous glucose monitoring in dialysis patients and extend them by linking session-level dysglycemia to immediate clinical outcomes [4-5]. The clinical implications are clear: patients with frequent intradialytic hypotension or cramps may benefit from CGM to identify high-risk patterns. Targeted strategies such as adjusting insulin timing, dialysate glucose, and ultrafiltration profiling could mitigate these risks. Emerging interventional studies suggest CGM-guided care is feasible in dialysis units and may reduce adverse events. Further randomized trials are needed to test whether CGM-based interventions improve patient outcomes [6-8].

Strengths include prospective CGM data, rigorous mixed-effects modeling, and multiple sensitivity analyses. Limitations include the single-center setting, modest sample size, and residual confounding. Nevertheless, these findings underscore the importance of recognizing glycemic variability during dialysis as a modifiable risk factor [9-11].

Ethical Clearance

The present study entitled "Comparison of Vascular Access of Brachiobasilic Arteriovenous Fistula to Brachiocephalic Arteriovenous Fistula for Hemodialysis in Patients with End Stage Renal Disease" was conducted in the Department of Dialysis Therapy Technology, University School of Allied Health Sciences, RayatBahra University, Mohali, Punjab, India.

Conflict of Interest: The authors declare no conflict of interest.

Funding Statement: This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

References

- 1. Mahakalkar, C., Jajoo, S. N., Kaple, M., &Kshirsagar, S. (2022). Vascular access for dialysis-A choice between brachiobasilic versus brachiocephalic arteriovenous fistula. *Journal of Datta Meghe Institute of Medical Sciences University*, 17(1), 84-88.
- 2. Cheng, C. T., Chang, Y. C., Tam, K. W., Yen, Y. C., & Ko, Y. C. (2021). Comparison between transposed brachiobasilic fistula and arteriovenous graft for upper limb arteriovenous access in patients on hemodialysis. *Vascular and Endovascular Surgery*, 55(2), 164-170.
- 3. Koksoy, C., Demirci, R. K., Balci, D., Solak, T., &Köse, S. K. (2009). Brachiobasilic versus brachiocephalic arteriovenous fistula: a prospective randomized study. *Journal of vascular surgery*, 49(1), 171-1
- Bashar, K., Healy, D. A., Elsheikh, S., Browne, L. D., Walsh, M. T., Clarke-Moloney, M., ... & Walsh, S. R. (2015). One-stage vs. two-stage brachio-basilic arteriovenous fistula for dialysis access: a systematic review and a meta-analysis. *PLoS One*, 10(3), e0120154.
- Magar, D. T., Shrestha, K., Chapagain, D., Shrestha, K., & Thapa, S. (2020). Comparative study of autologous radiocephalic and brachiocephalic arteriovenous fistula in patients with end stage renal disease. *Journal of Nepalgunj Medical College*, 18(1), 78-81.
- Hossny, A. (2003). Brachiobasilic arteriovenous fistula: different surgical techniques and their effects on fistula patency and dialysis-related complications. *Journal of* vascular surgery, 37(4), 821-826.
- Keuter, X. H., De Smet, A. A., Kessels, A. G., van der Sande, F. M., Welten, R. J. T. J., &Tordoir, J. H. (2008). A randomized multicenter study of the outcome of brachial-basilic arteriovenous fistula and prosthetic brachial-antecubital forearm loop as vascular access for hemodialysis. *Journal of* vascular surgery, 47(2), 395-401.
- 8. Dix, F. P., Y. Khan, and H. Al-Khaffaf. "The brachial artery-basilic vein arterio-venous fistula in vascular access for haemodialysis—a review paper." *European journal of vascular and endovascular surgery* 31, no. 1 (2006): 70-79.

- Weale, A. R., Bevis, P., Neary, W. D., Lear, P. A., & Mitchell, D. C. (2007). A comparison between transposed brachiobasilic arteriovenous fistulas and prosthetic brachioaxillary access grafts for vascular access for hemodialysis. *Journal* of vascular surgery, 46(5), 997-1004.
- 10. Oliver, M. J., Mccann, R. L., Indridason, O. S., Butterly, D. W., & Schwab, S. J. (2001). Comparison of transposed brachiobasilic fistulas to upper arm grafts and brachiocephalic fistulas. *Kidney international*, 60(4), 1532-1539.
- 11. Francis, D. M., Lu, Y., Robertson, A. J., Millar, R. J., & Amy, J. (2007). Two-stage brachiobasilic arteriovenous fistula for chronic haemodialysis access. *ANZ journal of surgery*, 77(3), 150-155.